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a b s t r a c t

We introduce a marker-particle method for the computation of three-dimensional solid
surface morphologies evolving by surface diffusion. The method does not use gridding of
surfaces or numerical differentiation, and applies to surfaces with finite slopes and over-
hangs. We demonstrate the method by computing the evolution of perturbed cylindrical
wires on a substrate. We show that computed growth rates at early times agree with those
predicted by the linear stability analysis. Furthermore, when the marker particles are redis-
tributed periodically to maintain even spacing, the method can follow breakup of the wire.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Capillarity-driven morphological instabilities and evolution of solid micro and nanostructures [29,27,28,5] are important
in many branches of materials science and engineering, such as electronic materials processing, crack healing in ceramics,
and densification of powder particles during sintering. For a microelectronic or optoelectronic device to function properly,
the structural integrity of the thin films must be maintained [18,15,35,36]. This requirement becomes more stringent as
the component size of integrated circuits decreases. Thus, characterization of thin film deformation is becoming one of
the more important issues in the reliability of integrated circuits.

Several methods have been proposed for direct computation of 3D solid deformation by surface diffusion. The level-set
methods were developed by Smereka [33] and Smith et al. [34], the finite-element methods by Burger [3], Bänsch et al.
[1], Hausser and Voigt [14], Mayer [21], and Deckelnick et al. [9], and the finite-difference method by Zhang [44]. Most of
these methods allow for surface topology changes and for implicit time stepping, and some allow for strong crystalline
anisotropy and associated formation of corners and cusps. However, with the exception of Ref. [34], all cited methods are
for closed or open periodic surfaces freely suspended in space. The method of Ref. [34] is capable of computing the deforming
contact lines, but it requires N � 1 level set functions if N phases are present, plus complicated and delicate procedure to
prevent formation of vacuum or overlaps at junctions of phases. All cited methods employ gridding of either the surface,
. All rights reserved.
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or of the three-dimensional space (as in the level set method). The level set and the finite-difference methods require numer-
ical differentiation. The finite-element methods usually require complex mesh regularization and triangulation’s angle con-
trol, at least at large times.

In this paper we describe a meshless particle method for computing evolving solid surfaces which are in contact with a
material boundary (substrate) at all times [42,20,19]. In crystal growth such setup is universal, since all methods for thin film
growth rely on deposition from the vapor phase or by means of atomic beams. We choose to model a cylindrical solid wire on
a substrate as it evolves by surface diffusion. It is assumed that the wire has been pre-grown in such a way that its axis is
parallel to the substrate. In the following, we call such wire supported, while one that is free of contact with any material
boundary is called a free wire. The cross-sectional shape of the wire is a part-circle with small perturbations imposed in
the axial and circumferential directions. We assume isotropic surface energy in this paper.

The surface and the three-phase contact lines formed among the film, substrate and air are explicitly tracked. We make no
assumption as to the smallness of the surface slope and allow any values of a contact angle a in ð0;pÞ. Surface overhangs are
handled naturally in our method. The method uses biquadratic interpolation for the computation of the surface normal and
(mean) curvature, and the surface Laplacian of mean curvature. We perform most of the computations in the local tangent-
plane coordinate system where the surface Laplacian is greatly simplified (Front-tracking methods employing marker par-
ticles have been long in use (and proved very successful) for direct numerical simulations of multiphase fluid flows and solid-
ification. The very extensive list of contributors and bibliography can be found in the review paper by Tryggvason et al. [38]).

The linear stability of supported circular wires with isotropic surface energy was considered by McCallum et al. [22], and
with anisotropic surface energy by Gurski et al. [13]. The linear stability of free circular wires with isotropic surface energy,
with respect to axial or circumferential perturbations was examined by Nichols and Mullins [30]. Surface energy anisotropy
was factored in the linear stability analysis of free wires by Cahn [4] and Gurski and McFadden [12] (In a related study, Kan
and Wong [16] considered the three-dimensional linear stability of a two-dimensional profile of a retracting edge of a film on
a substrate (assuming isotropic surface energy) [15,8,43] and found one unstable mode of perturbation; thus the edge be-
comes wavy when perturbed. They determined the growth rate of the perturbation as a function of the wavelength of the
perturbation and the speed of the receding edge).

This problem of stability of cylindrical wires can be traced back to Plateau and Lord Rayleigh [31,32]. Rayleigh found that
free, inviscid, capillary liquid threads are unstable to small axisymmetric perturbations whose wavelengths are greater than
the circumference of the undisturbed thread. Under the action of instability, the thread would tend to decompose in isolated
liquid droplets [25]. These conclusions hold also for the solid, free cylindrical wires with isotropic surface energy [30]. For
such wires, all purely non-axisymmetric disturbances decay. Rayleigh instability of supported copper, gold and platinum
nanowires was experimentally demonstrated [37,17,45]. The kinetic Monte Carlo simulations of instability development
due to axisymmetric perturbation (in a free wire) were performed by Muller et al. [26] and gave predictions consistent with
the Nichols and Mullins analysis.

This paper aims to present the new method and to validate it by computing the evolution of perturbed surfaces to equi-
librium, which could be wires if the perturbation is stable or drops if the perturbation is unstable. Physical implications/dis-
cussion will be presented elsewhere. It must be noted that we do not restrict the perturbation to axisymmetric form
(Stability and dynamics in the axisymmetric case for free cylindrical wires have been extensively studied using analytical
and numerical methods; most notably, see Refs. [7,6,41,2]).
2. Problem formulation

When a solid film evolves by capillarity-driven surface diffusion, the film surface displaces with a normal velocity that
obeys [29]
V�n ¼ Bðr�s � r�s Þj�; ð1Þ
wherer�s is the surface gradient operator, j� ¼ r� � n is the surface mean curvature (termed simply ‘‘curvature” below), n is
the unit outward normal to the surface, and B is a material constant. Superscript * denotes dimensional variables. This equa-
tion is derived using the fact that the chemical potential varies linearly with the curvature of the solid film surface. If the
surface curvature is not uniform, then a gradient in chemical potential exists. This gradient drives a surface flux, which redis-
tributes mass along the solid surface. The net effect is that the solid surface moves in the normal direction.

To demonstrate the tangent-plane method, we simulate the evolution of a supported wire with the cross-sectional shape
of a part-circle (Fig. 1). The radius of the circle is R0 which is used as the length scale. Time is made dimensionless by R4

0=B. In
dimensionless variables, Eq. (1) reads
dr
dt
� n ¼ Vn ¼ r2

s ðr � nÞ; ð2Þ
where rðtÞ ¼ xðtÞiþ yðtÞjþ zðtÞk is the position vector of a point on a surface. The Cartesian coordinates ðx; y; zÞ are defined
with y pointing in the axial direction and z pointing upward, as shown in Fig. 1. These coordinates form the global coordinate
system. The governing, fourth-order Eq. (2) is subject to the following boundary conditions. At the contact line x ¼ xcðyÞ, the



Fig. 1. An unperturbed wire in the shape of part-circle on a substrate. The radius of the circle is R0, which is used to make the system dimensionless. The
length of the computational domain is L. The wire surface has unit normal n and contacts the substrate with an equilibrium angle a. The unit vector m is
tangent to the wire surface and normal to the contact line. A Cartesian coordinate system is defined.
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height h of the wire surface is zero, the contact angle is in equilibrium, and the mass flux tangent to the wire surface and into
the substrate is zero [16,24,23]:
h ¼ 0; ð3Þ
n � k ¼ cos a; ð4Þ
m � rsj ¼ 0; ð5Þ
where 0 < a < p is the equilibrium contact angle, and m is the unit vector tangent to the wire surface and normal to the
contact line. The contact line position x ¼ xcðyÞ is unknown and must be determined as part of the solution, making this a
free-boundary problem. At the two symmetry planes of the wire y ¼ 0 and y ¼ L, we impose the symmetry condition:
@F
@y
¼ 0; ð6Þ
where F represents any quantity that crosses the symmetry boundaries. Eq. (2) and the boundary conditions (3)–(6) are sup-
plemented by an initial condition described below. A cylindrical coordinate system ðr; h; yÞ is defined with its origin coincid-
ing with the origin of the global Cartesian coordinates ðx; y; zÞ and h ¼ 0 is aligned with the x-axis (Fig. 1). Thus, the circular
arc cross-section of the equilibrium surface is described by
reðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 a cos2 h
p

� cos a sin h; 0 6 h 6 p: ð7Þ
At t ¼ 0, we impose a small periodic perturbation:
r ¼ re hð Þ þ d cosðkyÞ cosðphÞ; ð8Þ
where d is the small amplitude ðj d j� 1Þ; k is the wavenumber and p ¼ 0;1;2; . . .. The perturbation is axisymmetric when
a ¼ p=2 and p ¼ 0.

To this end we note that the surface Laplacian operator r2
s is quite complex [39]:
r2
s ¼

1
a

a22
@2

@x2 � 2a12
@

@x
@

@y
þ a11

@2

@y2 þ ja1=2 hx
@

@x
þ hy

@

@y

� �" #
; ð9Þ
where
a ¼ 1þ h2
x þ h2

y ; a11 ¼ 1þ h2
x ; a22 ¼ 1þ h2

y ; a12 ¼ hxhy ð10Þ
and
j ¼ � a22hxx � 2a12hxy þ a11hyy

a3=2 : ð11Þ
As a rule, the numerical evaluation of high-order derivatives in the RHS of Eq. (2) incurs large errors. It is therefore highly
desirable to construct the numerical method that uses a simpler form of r2

s and/or does not call for such numerical
differentiation.

3. The marker-particle method

The marker-particle method is implemented in seven steps: (i) place marker particles on a solid surface; (ii) fit a tangent
plane to each particle; (iii) locate five closest particles for each particle and transform their global coordinates to the local
tangent-plane coordinates; (iv) calculate the surface curvature j in the local coordinates; (v) evaluater2

s j in the local coor-
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dinates; (vi) march the particles forward in time; and (vii) update the contact-line particle positions. This finishes one time
step.

3.1. Initial marker distribution

We place chosen number of marker particles on the surface described by Eq. (8). For convenience, these particles initially
are arranged to be evenly spaced in the axial and azimuthal directions. As the computation proceeds, the surface often be-
comes greatly deformed, and some neighboring particles may move too close together. This will limit the time step size.
Hence, we redistribute the particles periodically to maintain even spacing among them. However, for the purpose of com-
puting the initial growth rate, the redistribution is not needed.

3.2. Tangent-plane construction

A marker particle is described as interior if it is neither on the contact lines nor on the symmetry planes. For a given inte-
rior particle P1 with global coordinates ðx1; y1; z1Þ, we find a cluster of five closest marker particles ðxk; yk; zkÞ; k ¼ 2; . . . ;6, and
fit a sphere of yet unknown radius R through the particle P1 and three closest particles (i.e., fit to ðxk; yk; zkÞ; k ¼ 1; . . . ;4Þ. This
determines the sphere center ðx0; y0; z0Þ (which is generally not on the surface), and R. The cost of this construction is the
solution of a 3� 3 linear algebraic system. The sphere center together with particle P1 yields the surface unit normal vector
at P1:
n ¼ lziþmzjþ nzk �
x1 � x0

R
iþ y1 � y0

R
jþ z1 � z0

R
k: ð12Þ
We define two orthogonal unit vectors in the tangent plane as
ex ¼ lxiþmxjþ nxk; ey ¼ lyiþmyjþ nyk; ð13Þ
and make them obey ex ¼ n� j and ey ¼ n� ex. Thus,
lx ¼ �
nzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
z þ l2

z

q ; mx ¼ 0; nx ¼
lzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
z þ l2

z

q ; ð14Þ

ly ¼ mznx; my ¼ lxnz � lznx; ny ¼ �lxmz: ð15Þ
This tangent plane at P1 may not be truly tangent to the surface owing to the spherical fit. However, we show later that this
error in finding the normal vector at P1 is eliminated by using the full expressions for curvature and surface Laplacian.

3.3. Transformation to local tangent-plane coordinates

Global coordinates of the five particles P2–P6 closest to particle P1 are transformed to local tangent-plane coordinates
ðX;Y; ZÞ as follows:
Xk ¼ lxðxk � x1Þ þmxðyk � y1Þ þ nxðzk � z1Þ;
Yk ¼ lyðxk � x1Þ þmyðyk � y1Þ þ nyðzk � z1Þ;
Zk ¼ lzðxk � x1Þ þmzðyk � y1Þ þ nzðzk � z1Þ ; k ¼ 2; . . . ;6:

ð16Þ
The tangent-plane coordinate system ðX;Y ; ZÞ has origin at P1ð0;0;0Þ and the axis Z is along the surface normal n.

3.4. Computation of curvature j

First, we fit the cluster particles by a biquadratic polynomial HðX;YÞ:
H ¼ a1X2 þ a2XY þ a3Y2 þ a4X þ a5Y þ a6: ð17Þ
Since P1ð0;0; 0Þ is one of the particles, a6 ¼ 0. The cost of determining the coefficients ai; i ¼ 1; . . . ;5, is the solution of a 5� 5
linear algebraic system:
Zk ¼ a1X2
k þ a2XkYk þ a3Y2

k þ a4Xk þ a5Yk ; k ¼ 2; . . . ;6: ð18Þ
The coefficients a4 and a5 must be zero whenever the tangent plane is exact, because in this case HX ¼ HY ¼ 0 at
ðX;YÞ ¼ ð0;0Þ. However, since a spherical fit is used in finding the normal vector at P1, leading to the tangent plane not ex-
actly tangent to the surface at P1, the coefficients a4 and a5 are non-zero. Their values are usually very small (� 0.01).

We can now compute the curvature at P1 using Eq. (11):
jð1Þ ¼ �
2 1þ a2

5

� �
a1 � 2a4a5a2 þ 2 1þ a2

4

� �
a3

1þ a2
4 þ a2

5

� �3=2 : ð19Þ



P. Du et al. / Journal of Computational Physics 229 (2010) 813–827 817
Since the curvature is calculated using the full expression, the error in finding the normal vector at P1 has no effect on jð1Þ.
The only discretization error comes from approximating the surface around P1 by the biquadratic polynomial in Eq. (17). Also
note that in the time stepping procedure we use corrected normal vectors, which are calculated from Eq. (17) (see
Section 3.6).

The local coordinate set Xk;Yk; Zkf g; k ¼ 1; . . . ;6 is memorized for each interior marker particle since it is required in Sec-
tion 3.5. Before the surface Laplacian could be computed at each interior particle, we need to find surface curvatures at the
contact lines and symmetry planes.

3.4.1. Computation of surface curvature at the contact lines
This curvature can be computed by imposing the zero mass-flux condition in Eq. (5) either with a first or second-order

accuracy numerical method. The first-order-accurate method sets the curvature at each contact-line marker equal to the cur-
vature at the closest interior marker location. To implement the second-order accurate method, we find two closest interior
particles, compute distances from the contact-line marker particle to these particles and, using the distance as an indepen-
dent variable, compute the one-sided first derivative of the curvature function. After setting this derivative to zero we obtain
the desired curvature. One-sided differentiation on non-uniform three-point grids is done using the subroutine WEIGHTS
[11]. Our numerical experiments with the two methods show no significant gain in the overall accuracy for the second-order
method. The results presented in Section 4 are obtained with the first-order method.

3.4.2. Computation of surface curvature at the symmetry boundaries
The surface curvatures at the symmetry planes y ¼ 0 and y ¼ L are calculated by imposing the symmetry condition (6).

The unit normal vector n at each particle on the symmetry plane must lie in the plane, i.e., mz ¼ 0 in Eq. (12). Thus, n at par-
ticle P1 is calculated by fitting a circular arc through P1 and two closest adjacent particles P2 and P3 on the plane. Once n is
found, a tangent plane can be constructed at P1 following Eqs. (13)–(15), and local tangent-plane coordinates ðX; Y; ZÞ can be
defined following Eq. (16). In the local coordinates, the symmetry plane is located at Y ¼ 0, and the symmetry condition (6)
becomes @=@Y ¼ 0 at Y ¼ 0. If the biquadratic polynomial HðX;YÞ in Eq. (17) is fitted to the surface at P1, then the symmetry
condition demands @H=@Y ¼ 0 at Y ¼ 0, yielding a2 ¼ a5 ¼ 0. Hence, the biquadratic polynomial reduces to
H ¼ a1X2 þ a3Y2 þ a4X. To find the coefficients, an interior particle P4 closest to P1 is located, and together with P2 and P3

is sufficient to determine the coefficients. The surface curvature j at P1 is then found from Eq. (19).

3.5. Computation of r2
s j

For each interior particle P1, we fit curvature j for the five closest particles P2–P6 by a biquadratic polynomial jðX;YÞ, i.e.,
j ¼ b1X2 þ b2XY þ b3Y2 þ b4X þ b5Y þ b6; ð20Þ
where b6 ¼ jð0;0Þ ¼ jð1Þ is the curvature at P1 and is known. The cost of determining the coefficients bi; i ¼ 1; . . . ;5 is the
solution of a 5� 5 linear algebraic system. The full Laplacian operator in Eq. (9) translates into
r2
s j

� �ð1Þ
¼ 2

1þ a2
5

� �
b1 � a4a5b2 þ 1þ a2

4

� �
b3

1þ a2
4 þ a2

5

þ b6 a4b4 þ a5b5ð Þ
1þ a2

4 þ a2
5

� �1=2
:

ð21Þ
Since the surface Laplacian is computed at P1ð0;0;0Þ; b4 and b5 are all that remains of the otherwise more complicated
expressions for @j=@x and @j=@y in the last term of Eq. (9). Furthermore, the full surface Laplacian also implies that the error
in finding the surface normal at P1 has no effect on the accuracy ofr2

s j. Computation ofr2
s j is repeated for all interior mar-

ker particles.

3.5.1. Computation of r2
s j at the contact lines

There is no need to calculate r2
s j for the marker particles at the contact lines because the particles are advanced in time

by imposing the boundary conditions (3)–(5), and not by the evolution Eq. (2), as described in Section 3.7.

3.5.2. Computation of r2
s j at the symmetry boundaries

The computation ofr2
s j is similar to the procedure of calculating surface curvatures. When the symmetry condition (6) is

applied to Eq. (20), we get @j=@Y ¼ 0 at Y ¼ 0. This gives b2 ¼ b5 ¼ 0. Thus, we can solve the remaining three coefficients in
Eq. (20) using curvatures at P2; P3, and P4, the particles used in the curvature calculation. Once Eq. (20) is known, r2

s j at P1

follows from Eq. (21).

3.6. Time stepping

Interior particles and particles at symmetry planes are marched forward in time using Euler’s method:
rðt þ DtÞ ¼ rðtÞ þ ngVnDt; ð22Þ
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where r ¼ xiþ yjþ zk is the global position vector of a particle ðP1Þ;Vn ¼ r2
s j, and ng is the improved unit normal at P1 in

the global coordinates. To find ng , we first compute the improved unit normal N in the local coordinates from the biquadratic
polynomial in Eq. (17) as
N ¼ �a4I� a5Jþ Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

4 þ a2
5

q ; ð23Þ
where I, J, and K are the base vectors of the local coordinate system. In the global coordinate system, I, J, and K are repre-
sented by ex; ey, and n, respectively, as shown in Eqs. (12)–(15). Thus, N is transformed to ng by solving the following three
equations:
ng � ex ¼ N � I; ng � ey ¼ N � J; ng � n ¼ N � K: ð24Þ
These three equations determine the three components of ng . The improved unit normal ng eliminates the error in the nor-
mal vector in Eq. (12).

To ensure numerical stability and to enhance marching speed, the time step Dt varies as
Dt ¼ CtðDsÞ4; ð25Þ
where Ds is the minimum distance between any two particles at time t and Ct is a constant determined by trial-and-error.
The value of Ct stays fixed for each computation and varies from 0.0258 to 0.0487 for different wires.
3.7. Propagation of contact lines

After the interior particles have been marched forward one time step, the contact-line particle positions are updated by
imposing the boundary conditions (3)–(5). For each contact-line particle P1, we find the closest marched interior particle
P2ðx2; y2; z2Þwith improved normal vector ngðlz;mz;nzÞ. This normal vector is never vertical because P2 is close to the contact
line and the contact angle a – 0 or p. Hence, ng is inclined in a direction that is perpendicular to the contact line. We define a
vertical plane that contains point P2 and ng , so that the plane is perpendicular to the contact line. In this vertical plane, we fit
a circular arc that passes through P2 with the center along ng and contacts the substrate with angle a. The contact point is the
new P1ðx1; y1, 0) where
x1 ¼ x2 þ
z2lz

cos a� nz
1� sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2
z þm2

z

q
0
B@

1
CA;

y1 ¼ y2 þ
z2mz

cos a� nz
1� sinaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2z þm2
z

q
0
B@

1
CA:

ð26Þ
The circular-arc fit gives rsj ¼ 0 along the arc. In this way, both the zero mass-flux and the contact angle conditions are
satisfied. For the contact-line particles at the symmetry planes, we constrain P2 to lie at the symmetry plane, leading to a
new P1 always at the symmetry plane. Thus, all contact-line positions are updated (see Du [10] for details). This method
is valid for 0 < a < p.
4. Validation

4.1. Volume

Surface diffusion does not alter the mass or volume of the wire. Thus, the wire volume is a good indicator of the accuracy
of our numerical method. The volume V of the wire can be expressed as
V ¼ 1
3

Z Z Z
V
ðr � xÞdV ¼ 1

3
tAðx � nÞdA; ð27Þ
where x ¼ xiþ yjþ zk is the three-dimensional position vector of a point in the wire, n ¼ nxiþ nyjþ nzk is the unit normal
vector of the surface pointing outward from the wire, and A is the wire surface that includes two end surfaces at symmetry
planes, the cylindrical surface, and the substrate surface. Thus, V ¼ Vy¼0 þ Vy¼L þ Vs þ Vc , where the subscript s and c repre-
sent the substrate and the cylindrical surface, respectively. We calculate the volume of the wire by evaluating the surface
integral on four surfaces separately.

On the substrate surface, the contact-line particles have coordinate z ¼ 0 and surface normal vector n = �k. Thus, we get
x � n ¼ 0, and Vs ¼ 0.

Similarly, on the symmetry surface y ¼ 0, we have Vy¼0 ¼ 0 because n ¼ �j and x � n ¼ 0.
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On the symmetry surface at y ¼ L; x � n ¼ L since n ¼ j and x ¼ xiþ Ljþ zk. Thus, Vy¼L ¼ LAy¼L=3. According to Green’s the-
orem, Ay¼L ¼ 1=2

R R
Aðr � xÞdA ¼ 1=2

H
ðxdz� zdxÞ. Using the rectangular approximation, we get
Vy¼L ¼
L
6

XNe�1

i¼1

ðxiziþ1 � zixiþ1Þ; ð28Þ
where Ne is the number of particles on the symmetry surface.
The last surface is the cylindrical surface. This surface is approximated by triangular surfaces formed by connecting all

adjacent marker particles. The area of the ith triangle formed by three particles at xi1;xi2, and xi3 is
Ai ¼ 1

2 ðxi1 � xi2Þ � ðxi2 � xi3Þj j. We also take ðx � nÞi ¼ ðxi1 � ni1 þ xi2 � ni2 þ xi3 � ni3Þ=3 , where nij is the improved unit normal
vector at xij, j ¼ 1;2;3. The volume on this surface can be expressed as
Vc ¼
1
3

XM

i¼1

ðx � nÞiAi; ð29Þ
where M is the total number of triangles on the cylindrical surface. The variables used in Eqs. (28) and (29) are readily avail-
able from the numerical solution. Thus, the volume of the wire V ¼ Vy¼L þ Vc can be calculated without additional
interpolation.

We calculate the volume of initially unperturbed wires with different particle numbers and find that the method is second-
order accurate. We also compute the volume as a function of time. For all decaying cases, the volume varies at most by about 1%.

4.2. Surface normal velocity versus time

We compute the evolution of wires with three different contact angles a ¼ p=2;p=4; and 3p=4. For each wire, the equi-
librium surface profile in Eq. (7) is perturbed according to Eq. (8) with d ¼ 0:01; p ¼ 0 or 2, and k ¼ p=L; where L is the axial
length of the computational domain. The perturbation in Eq. (8) has wavelength 2L in the axial direction. However, owing to
symmetry, we only need to follow wire evolution in 0 6 y 6 L. Since the initial perturbation in Eq. (8) is not an eigenmode, it
can be decomposed into several eigenmodes that decay or grow exponentially at different rates. For a stable perturbation,
the fundamental mode decays the slowest, and is the one observed at the end. Thus, after some time, our computed decay
rate should approach that of the fundamental mode derived by the linear stability analysis. In the unstable case, the normal
velocity grows exponentially with time initially. The growth rate can also be compared with that predicted by the linear sta-
bility theory.

To compare with linear stability predictions, we extrapolate computed growth rates to zero particle spacing. For each per-
turbed wire, we analyze the surface normal velocity as a function of time for two marker particles located at the intercep-
tions between the mid-plane x ¼ 0 and the symmetry planes y ¼ 0 and y ¼ L. These two particles always stay at the same
ðx; yÞ positions as we vary the particle number N. Hence, their normal velocities can be compared for different N. For each
wire, we select four different N such that the initial spacing has the ratio 1, 1/2, 1/4, and 1/8 among the cases. The computed
normal velocity at each grid-invariant particle is fitted by an exponential function to yield the growth rate. The fitting is car-
ried out over a range of time that shows the best regression value for all four N cases. For each N, the two growth rates at the
two grid-invariant particles are averaged. The average growth rate is then plotted as a function of initial particle spacing
ð� 1=NÞ and fitted by a quadratic curve. The curve is extrapolated to zero particle spacing to give a growth rate that is inde-
pendent of particle spacing. This growth rate is compared with the linear stability prediction. By varying the time step and N,
we find that our numerical method is first-order accurate in time and second-order accurate in space, as expected.

4.3. a ¼ p=2

For a ¼ p=2, the supported wire behaves as a free wire. An analytic solution can be derived for the growth rate r by the
linear stability analysis (Appendix A):
r ¼ p2 þ k2
� �

1� p2 � k2
� �

: ð30Þ
We first consider a perturbed wire with L ¼ 1; k ¼ p and p ¼ 0. According to Eq. (30), the perturbation is stable with growth
rate r ¼ �87:54. We use four particle numbers N ¼ 44;147;533, and 2025, and time step Dt that follows Eq. (25). In Fig. 2,
we plot the normal surface velocity Vn versus time computed using N ¼ 2025 for the two grid-invariant marker particles at
y ¼ 0 and y ¼ L. The growth rates are found by an exponential fit to be �87.26 and �87.28. The exponential fits are also plot-
ted in Fig. 2 and are indistinguishable from each other. The average value r ¼ �87:27 together with other N cases is plotted
in Fig. 3 as a function of Ds0, which is the minimum particle spacing at t ¼ 0. A quadratic fit to the data yields
r ¼ �87:68þ 4:009Ds0 þ 153:2Ds2

0. Thus, at Ds0 ¼ 0, we get r ¼ �87:68, which compares well with the linear stability
result.

We then change p from 0 to 2 to study the effect of azimuthal perturbation. We follow the procedure described above, and
find that the extrapolated growth rate at zero particle spacing is r ¼ �178:6, which is close to the predicted value
r ¼ �178:5 using Eq. (30).



Fig. 2. Normal surface velocity Vn versus time for the two grid-invariant marker particles at y ¼ 0 and y ¼ L. The computation is performed using
a ¼ p=2; L ¼ 1; d ¼ 0:01; k ¼ p;p ¼ 0, and N ¼ 2025. The results are fitted by an exponential function in the range t ¼ 0:02� 0:06, which shows the highest
regression value.

Fig. 3. Growth rate r versus initial minimum grid spacing Ds0 for a ¼ p=2; L ¼ 1; d ¼ 0:01; k ¼ p, and p ¼ 0. A quadratic best fit is also plotted.
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We also study an unstable case with L ¼ 4; k ¼ p=4; p ¼ 0, and N ¼ 2793. The surface normal velocities increase exponen-
tially with time, as shown in Fig. 4. We fit the data by an exponential function over a range of time that yields the best regres-
sion value. The fit gives r ¼ 0:2377 and r ¼ 0:2374 for the particle at y ¼ 0 and y ¼ L, respectively. The average value
together with those similarly calculated using N ¼ 56, 195, and 725 is fitted by a quadratic curve. The curve is extrapolated
to zero particle spacing giving r ¼ 0:2368: The predicted growth rate using Eq. (30) is r ¼ 0:2363. The wire evolves towards
pinch off as shown in Fig. 5, in agreement with axisymmetric calculations [7,6,41,2].

4.4. a ¼ p=4

We consider L ¼ p; k ¼ 1; and p ¼ 0 or 2. The surface normal velocity Vn computed using N ¼ 1881 is plotted in Fig. 6 as a
function of time for p ¼ 0 (a) and p ¼ 2 (b). Fig. 6(a) shows that the perturbation with p ¼ 0 is unstable and it grows expo-
nentially in time after some high-order modes have decayed. Fig. 6(b) shows that the p ¼ 2 mode is stable and it decays
quickly before the p ¼ 0 mode starts to grow. The growth rates for p ¼ 0 and p ¼ 2 are calculated following the procedures
described above. We find r ¼ 1:762 for p ¼ 0 and r ¼ �222:2 for p ¼ 2. The linear stability analysis gives the corresponding
values r ¼ 1:722 and �223.9 [40]. The wire profiles at different times for the unstable case p ¼ 0 are plotted in Fig. 7.

4.5. a ¼ 3p=4

We consider a perturbed wire with L ¼ p; k ¼ 1; p ¼ 0, and N ¼ 28, 91, 325, and 1225. We find that the perturbation is
stable with extrapolated growth rate r ¼ �0:2353, which is close to the linear stability value of r ¼ �0:2345 [40].



Fig. 4. Normal surface velocity Vn versus time for the two grid-invariant marker particles at y ¼ 0 and y ¼ L. The computation is performed using
a ¼ p=2; L ¼ 4; d ¼ 0:01; k ¼ p=4;p ¼ 0, and N ¼ 2793. The results are fitted by an exponential function in the range t ¼ 0:9� 1:2, which shows the highest
regression value.

Fig. 5. Wire profiles at time t ¼ 0 (a), t ¼ 11 (b), and t ¼ 13:25 (c) for a ¼ p=2; L ¼ 4; d ¼ 0:01, k ¼ p=4, and p ¼ 0.
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We then change L from p to 2p (and k from 1 to 1/2) to study the evolution of a longer wire. For this longer wire, more
marker particles are needed and N ¼ 49, 169, 625, and 2401. We find that the perturbation is unstable with extrapolated
growth rate r ¼ 0:1371. This compares well with predicted value r ¼ 0:1370 [40]. The wire profiles at different times are
shown in Fig. 8.
5. Redistribution of marker particles

As shown in Figs. 5, 7 and 8, the particles move closer at the thin end. Thus, the minimum distance Ds between any two
particles decreases with time, and so is the time step Dt, according to Eq. (25). This can make the time marching excruciat-
ingly slow. To alleviate this problem, we redistribute the particles once every 100 time steps to maintain more even sepa-



Fig. 6. Normal surface velocity Vn versus time for the two grid-invariant marker particles at y ¼ 0 and y ¼ L. The computation is performed using
a ¼ p=4; L ¼ p; d ¼ 0:01; k ¼ 1;N ¼ 1881, and (a) p ¼ 0 and (b) p ¼ 2. In (a) the results are fitted by an exponential function in the range t ¼ 0:267� 0:3, and
in (b) the range is t ¼ 0:005� 0:011. These ranges show the highest regression values.
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ration among them. Since the particles redistribute, a nominal particle separation has to be defined and maintained through-
out the evolution of the wire. We take the nominal particle separation Ds0 as the minimum distance between any two
particles at time t ¼ 0. If two particles are closer than Dsm ¼ 0:6 Ds0, then one of the particles will be eliminated.
This elimination is necessary because the total surface area of the wire decreases with time, which is expected for
capillarity-driven surface deformation. The particle elimination also allows breakup of the wire. The distribution of particles
is carried out in four steps.
5.1. Addition of contact-line particles

When the wire breaks up, it is necessary to add contact-line particles because new contact lines will be created. This is
done before the redistribution of interior particles. First, all interior particles that are used in Section 3.7 to march the con-
tact-line particles are identified. Their vertical distances from the substrate are recorded and the maximum height is denoted
by hm. Then, all other interior particles with height h < hm are assumed to be close to the contact line and each is given a new
contact-line particle following Eq. (26). Since new contact lines are created during breakup of wires, this addition of contact-
line particles is necessary if we want to follow the breakup process.
5.2. Elimination of interior particles

For each interior particle P1, we calculate the distance between P1 and its closest neighbor particle P2. If the distance
P1P2 < Dsm ¼ 0:6 Ds0, then P1 is eliminated. This maintains the minimum separation between any two particles to be greater
than Dsm.



Fig. 7. Wire profiles at time t ¼ 0 (a), t ¼ 0:8 (b), and t ¼ 1:24 (c) for a ¼ p=4; L ¼ p; d ¼ 0:01; k ¼ 1, and p ¼ 0.

Fig. 8. Wire profiles at time t ¼ 0 (a), t ¼ 20 (b), and t ¼ 23 (c) for a ¼ 3p=4; L ¼ 2p; d ¼ 0:01; k ¼ 1=2; and p ¼ 0.
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5.3. Redistribution of interior particles

For each interior particle P1, we identify eight closest particles P2; . . . ; P9, in the ascending order of separation distance.
These particles are projected normally onto the local tangent plane of P1. The projected image of Pi; i ¼ 2; . . . ;9, is assumed
to interact with P1 by a repulsive force:
f i ¼ �
xi � x1

r
Ds0

r

� �7

ð31Þ
where f i is the in-plane force acting on P1 by Pi;xi is the position of the projected image of Pi;x1 is the position P1, and
r ¼j xi � x1 j. The total force from the projected images of particle P2–P9 on P1 is calculated, and P1 is moved by a distance
proportional to the total force in the direction of the total force. After this in-plane displacement, P1 moves to a position on
the tangent plane that is more equally separated from P2 to P9. This new in-plane position of P1 is the projected image of P1,



Fig. 9. Wire profiles at four different times for a ¼ p=4; L ¼ p; d ¼ 0:01; k ¼ 1, and p ¼ 0. The marker particles are plotted as points.

Fig. 10. Wire profiles at four different times for a ¼ p=2; L ¼ 4; d ¼ 0:01; k ¼ p=4; and p ¼ 0. The marker particles are plotted as points.
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Fig. 11. Wire profiles at four different times for a ¼ 3p=4; L ¼ 2p; d ¼ 0:01; k ¼ 1=2, and p ¼ 0. The marker particles are plotted as points.
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and the normal height of P1 from the tangent plane is calculated using the biquadratic polynomial in (17). The redistribution
is carried out for all interior particles.

At the symmetry planes, a particle P1 is eliminated if P1P2 < Dsm, where P2 is the closest particle on the symmetry plane.
Otherwise, P1 is relocated to the midpoint between P2 and P3, where P3 is the closest particle to P1 on the symmetry plane on
the opposite side from P2.
5.4. Elimination of contact-line particles

The contact line particles are eliminated as follows. After elimination and redistribution of interior particles, it is possible
that two contact-line particles share the same closest interior particle. In that case, one of the two will be eliminated. Thus,
only one contact-line particle is associated with one closest interior particle, and the marching scheme in Section 3.7 can be
implemented.

Figs. 9–11 show the breakup of wires for different contact angles. To capture breakup, we have to simulate the whole
wavelength 2L of an unstable perturbation. No special criterion is imposed to induce breakup. As the neck thins, the particles
are concentrated and subsequently dropped if their separation distances are less than Dsm. Thus, as the neck radius reaches
the same order as Dsm, all the particles at the neck are eliminated, and the wire breaks as a result. Hence, the breakup follows
naturally from the particle elimination scheme and no additional criterion is imposed or needed.
6. Conclusions

In this paper the tangent-plane marker-particle method for the computation of 3D morphological evolution of solid sur-
faces is developed and tested. We demonstrated quadratic convergence in space and matching of surface growth rates to
linear theories. The wire volume is conserved during the simulations. The base complexity (per time step) of the method
is only
C ¼ 2N C1 þ C2ð Þ þ 2NsðC3 þ C1Þ þ C4ðN þ Ns þ NcÞ ð32Þ
where N is the number of interior marker particles, Ns is the number of symmetry plane particles (excluding the contact line
particle on symmetry planes), Nc is the number of contact-line particles, C1 is the complexity of solving 3� 3 linear algebraic
system (LAS), C2 is the complexity of solving 5� 5 LAS, C3 is the complexity of solving 2� 2 LAS, and C4 is the complexity of
sorting at most eight real numbers in ascending order.
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Appendix A. Linear stability for a ¼ p=2

Nichols and Mullins [30] studied the linear stability of a free circular wire, but they separated axial and non-axisymmetric
perturbations. Here we consider both perturbations simultaneously and derive the growth rate in Eq. (30). It is shown by
McCallum et al. [22] that the supported wire having contact angle p=2 is equivalent, as far as isotropic evolution of morphol-
ogy is concerned, to a free wire.

Consider the circular wire shown in Fig. 1 and assume a ¼ p=2. The origin of the cylindrical coordinates ðr; h; yÞ used in
Eq. (7) now is at the center of the wire. If a small perturbation e is applied, then the wire surface location becomes
rðt; h; yÞ ¼ 1þ eðt; h; yÞ: ðA1Þ
When this is substituted into Eq. (2), we get [22]
@e
@t
¼ � @4e

@y4 þ 2
@4e

@2y@2h
þ @

4e
@h4 þ

@2e
@y2 þ

@2e
@h2

 !
: ðA2Þ
We take
e ¼ ert cos ky cos ph: ðA3Þ
This gives Eq. (30). Hence, if p ¼ 0 (axisymmetric mode), then r > 0 for k < 1. If p P 1, then r 6 0 for all k.
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